Besov spaces on symmetric manifolds—the atomic decomposition
نویسندگان
چکیده
منابع مشابه
On an atomic decomposition in Banach spaces
An atomic decomposition is considered in Banach space. A method for constructing an atomic decomposition of Banach space, starting with atomic decomposition of subspaces is presented. Some relations between them are established. The proposed method is used in the study of the frame properties of systems of eigenfunctions and associated functions of discontinuous differential operators.
متن کاملDecomposition of Besov-Morrey Spaces
We establish a decomposition of Besov-Morrey spaces in terms of smooth “wavelets” obtained from a Littlewood-Paley partition of unity, or more generally molecules concentrated on dyadic cubes. We show that an expansion in atoms supported on dyadic cubes holds. We study atoms in Morrey spaces and prove a Littlewood-Paley theorem. Our results extend those of M. Frazier and B. Jawerth for Besov sp...
متن کاملHolomorphic Besov Spaces on Bounded Symmetric Domains, II
The paper continues the study of a class of holomorphic Besov spaces on bounded symmetric domains which was initiated in [18]. Several new descriptions of these Besov spaces are given in terms of weighted Bergman projections and fractional differential operators. These new characterizations are then applied to obtain results about the duality of, and Hankel operators on, weighted Bergman spaces...
متن کاملDecomposition of Besov and Triebel – Lizorkin spaces on the sphere ✩
A discrete system of almost exponentially localized elements (needlets) on the n-dimensional unit sphere Sn is constructed. It shown that the needlet system can be used for decomposition of Besov and Triebel–Lizorkin spaces on the sphere. As an application of Besov spaces on Sn, a Jackson estimate for nonlinear m-term approximation from the needlet system is obtained. © 2006 Elsevier Inc. All r...
متن کاملErratum to: Atomic and molecular decompositions of anisotropic Besov spaces
We give a corrected proof of Lemma 3.1 in [1]. While the statement of [1, Lemma 3.1] is true, its proof is incorrect. The argument contains a serious defect which can not be easily corrected. The inequality that appears in [1] before (3.5) is not true. If this inequality was true, then we could conclude that, even for a non doubling measure μ, (3.5) was also true. But there exist some non doubl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Studia Mathematica
سال: 1997
ISSN: 0039-3223,1730-6337
DOI: 10.4064/sm-124-3-215-238